Thinking, Fast and Slow

Metadata

Highlights

Psychologists have been intensely interested for several decades in the two modes of thinking evoked by the picture of the angry woman and by the multiplication problem, and have offered many labels for them. I adopt terms originally proposed by the psychologists Keith Stanovich and Richard West, and will refer to two systems in the mind, System 1 and System 2. System 1 operates automatically and quickly, with little or no effort and no sense of voluntary control. System 2 allocates attention to the effortful mental activities that demand it, including complex computations. The operations of System 2 are often associated with the subjective experience of agency, choice, and concentration. — location: 355


Two Systems Psychologists have been intensely interested for several decades in the two modes of thinking evoked by the picture of the angry woman and by the multiplication problem, and have offered many labels for them. I adopt terms originally proposed by the psychologists Keith Stanovich and Richard West, and will refer to two systems in the mind, System 1 and System 2. System 1 operates automatically and quickly, with little or no effort and no sense of voluntary control. System 2 allocates attention to the effortful mental activities that demand it, including complex computations. The operations of System 2 are often associated with the subjective experience of agency, choice, and concentration. — location: 354


When we think of ourselves, we identify with System 2, the conscious, reasoning self that has beliefs, makes choices, and decides what to think about and what to do. Although System 2 believes itself to be where the action is, the automatic System 1 is the hero of the book. I describe System 1 as effortlessly originating impressions and feelings that are the main sources of the explicit beliefs and deliberate choices of System 2. The automatic operations of System 1 generate surprisingly complex patterns of ideas, but only the slower System 2 can construct thoughts in an orderly series of steps. I also describe circumstances in which System 2 takes over, overruling the freewheeling impulses and associations of System 1. You will be invited to think of the two systems as agents with their individual abilities, limitations, and functions. — location: 363


In rough order of complexity, here are some examples of the automatic activities that are attributed to System 1: Detect that one object is more distant than another. Orient to the source of a sudden sound. Complete the phrase “bread and…” Make a “disgust face” when shown a horrible picture. Detect hostility in a voice. Answer to 2 + 2 = ? Read words on large billboards. Drive a car on an empty road. Find a strong move in chess (if you are a chess master). Understand simple sentences. Recognize that a “meek and tidy soul with a passion for detail” resembles an occupational stereotype. — location: 369


System 1 has learned associations between ideas (the capital of France?); it has also learned skills such as reading and understanding nuances of social situations. — location: 380


Some skills, such as finding strong chess moves, are acquired only by specialized experts. — location: 382


The highly diverse operations of System 2 have one feature in common: they require attention and are disrupted when attention is drawn away. Here are some examples: Brace for the starter gun in a race. Focus attention on the clowns in the circus. Focus on the voice of a particular person in a crowded and noisy room. Look for a woman with white hair. Search memory to identify a surprising sound. Maintain a faster walking speed than is natural for you. Monitor the appropriateness of your behavior in a social situation. Count the occurrences of the letter a in a page of text. Tell someone your phone number. Park in a narrow space (for most people except garage attendants). Compare two washing machines for overall value. Fill out a tax form. Check the validity of a complex logical argument. — location: 391


Intense focusing on a task can make people effectively blind, even to stimuli that normally attract attention. The most dramatic demonstration was offered by Christopher Chabris and Daniel Simons in their book The Invisible Gorilla. They constructed a short film of two teams passing basketballs, one team wearing white shirts, the other wearing black. The viewers of the film are instructed to count the number of passes made by the white team, ignoring the black players. This task is difficult and completely absorbing. Halfway through the video, a woman wearing a gorilla suit appears, crosses the court, thumps her chest, and moves on. The gorilla is in view for 9 seconds. Many thousands of people have seen the video, and about half of them do not notice anything unusual. It is the counting task—and especially the instruction to ignore one of the teams—that causes the blindness. No one who watches the video without that task would miss the gorilla. Seeing and orienting are automatic functions of System 1, but they depend on the allocation of some attention to the relevant stimulus. The authors note that the most remarkable observation of their study is that people find its results very surprising. Indeed, the viewers who fail to see the gorilla are initially sure that it was not there—they cannot imagine missing such a striking event. The gorilla study illustrates two important facts about our minds: we can be blind to the obvious, and we are also blind to our blindness. — location: 418


System 1 runs automatically and System 2 is normally in a comfortable low-effort mode, in which only a fraction of its capacity is engaged. System 1 continuously generates suggestions for System 2: impressions, intuitions, intentions, and feelings. If endorsed by System 2, impressions and intuitions turn into beliefs, and impulses turn into voluntary actions. When all goes smoothly, which is most of the time, System 2 adopts the suggestions of System 1 with little or no modification. You generally believe your impressions and act on your desires, and that is fine—usually. — location: 430


When System 1 runs into difficulty, it calls on System 2 to support more detailed and specific processing that may solve the problem of the moment. System 2 is mobilized when a question arises for which System 1 does not offer an answer, as probably happened to you when you encountered the multiplication problem 17 × 24. — location: 435


Müller-Lyer illusion. As you can easily confirm by measuring them with a ruler, the horizontal lines are in fact identical in length. — location: 475


You have chosen to believe the measurement, but you cannot prevent System 1 from doing its thing; you cannot decide to see the lines as equal, although you know they are. To resist the illusion, there is only one thing you can do: you must learn to mistrust your impressions of the length of lines when fins are attached to them. To implement that rule, you must be able to recognize the illusory pattern and recall what you know about it. If you can do this, you will never again be fooled by the Müller-Lyer illusion. But you will still see one line as longer than the other. — location: 480


There are illusions of thought, which we call cognitive illusions. As a graduate student, I attended some courses on the art and science of psychotherapy. During one of these lectures, our teacher imparted a morsel of clinical wisdom. This is what he told us: “You will from time to time meet a patient who shares a disturbing tale of multiple mistakes in his previous treatment. He has been seen by several clinicians, and all failed him. The patient can lucidly describe how his therapists misunderstood him, but he has quickly perceived that you are different. You share the same feeling, are convinced that you understand him, and will be able to help.” At this point my teacher raised his voice as he said, “Do not even think of taking on this patient! Throw him out of the office! He is most likely a psychopath and you will not be able to help him.” Many years later I learned that the teacher had warned us against psychopathic charm, and the leading authority in the study of psychopathy confirmed that the teacher’s advice was sound. — location: 485


It is meaningful only because of what you already know about System 2. It is shorthand for the following: “Mental arithmetic is a voluntary activity that requires effort, should not be performed while making a left turn, and is associated with dilated pupils and an accelerated heart rate.” — location: 512


article in Scientific American in which the psychologist Eckhard Hess described the pupil of the eye as a window to the soul. I reread it recently and again found it inspiring. It begins with Hess reporting that his wife had noticed his pupils widening as he watched beautiful nature pictures, and it ends with two striking pictures of the same good-looking woman, who somehow appears much more attractive in one than in the other. There is only one difference: the pupils of the eyes appear dilated in the attractive picture and constricted in the other. Hess also wrote of belladonna, a pupil-dilating substance that was used as a cosmetic, and of bazaar shoppers who wear dark glasses in order to hide their level of interest from merchants. One of Hess’s findings especially captured my attention. He had noticed that the pupils are sensitive indicators of mental effort—they dilate substantially when people multiply two-digit numbers, and they dilate more if the problems are hard than if they are easy. His observations indicated that the response to mental effort is distinct from emotional arousal. Hess’s work did not have much to do with hypnosis, but I concluded that the idea of a visible indication of mental effort had promise as a research topic. A graduate student in the lab, Jackson Beatty, shared my enthusiasm and we got to work. — location: 557


The pupil data corresponded precisely to subjective experience: longer strings reliably caused larger dilations, the transformation task compounded the effort, and the peak of pupil size coincided with maximum effort. — location: 577


As you become skilled in a task, its demand for energy diminishes. Studies of the brain have shown that the pattern of activity associated with an action changes as skill increases, with fewer brain regions involved. Talent has similar effects. Highly intelligent individuals need less effort to solve the same problems, as indicated by both pupil size and brain activity. A general “law of least effort” applies to cognitive as well as physical exertion. — location: 626


The law asserts that if there are several ways of achieving the same goal, people will eventually gravitate to the least demanding course of action. In the economy of action, effort is a cost, and the acquisition of skill is driven by the balance of benefits and costs. Laziness is built deep into our nature. — location: 629


“What came quickly to my mind was an intuition from System 1. I’ll have to start over and search my memory deliberately.” — location: 682


System 2 also has a natural speed. You expend some mental energy in random thoughts and in monitoring what goes on around you even when your mind does nothing in particular, but there is little strain. Unless you are in a situation that makes you unusually wary or self-conscious, monitoring what happens in the environment or inside your head demands little effort. You make many small decisions as you drive your car, absorb some information as you read the newspaper, and conduct routine exchanges of pleasantries with a spouse or a colleague, all with little effort and no strain. Just like a stroll. — location: 691


It is normally easy and actually quite pleasant to walk and think at the same time, but at the extremes these activities appear to compete for the limited resources of System 2. You can confirm this claim by a simple experiment. While walking comfortably with a friend, ask him to compute 23 × 78 in his head, and to do so immediately. He will almost certainly stop in his tracks. My experience is that I can think while strolling but cannot engage in mental work that imposes a heavy load on short-term memory. If I must construct an intricate argument under time pressure, I would rather be still, and I would prefer sitting to standing. — location: 695


cognitive work is not always aversive, and people sometimes expend considerable effort for long periods of time without having to exert willpower. The psychologist Mihaly Csikszentmihalyi (pronounced six-cent-mihaly) has done more than anyone else to study this state of effortless attending, and the name he proposed for it, flow, has become part of the language. People who experience flow describe it as “a state of effortless concentration so deep that they lose their sense of time, of themselves, of their problems,” and their descriptions of the joy of that state are so compelling that Csikszentmihalyi has called it an “optimal experience.” Many activities can induce a sense of flow, from painting to racing motorcycles—and for some fortunate authors I know, even writing a book is often an optimal experience. Flow neatly separates the two forms of effort: concentration on the task and the deliberate control of attention. Riding a motorcycle at 150 miles an hour and playing a competitive game of chess are certainly very effortful. In a state of flow, however, maintaining focused attention on these absorbing activities requires no exertion of self-control, thereby freeing resources to be directed to the task at hand. — location: 712


You are told that remembering the digits is your top priority. While your attention is focused on the digits, you are offered a choice between two desserts: a sinful chocolate cake and a virtuous fruit salad. The evidence suggests that you would be more likely to select the tempting chocolate cake when your mind is loaded with digits. System 1 has more influence on behavior when System 2 is busy, and it has a sweet tooth. — location: 724


People who are cognitively busy are also more likely to make selfish choices, use sexist language, and make superficial judgments in social situations. — location: 727


Another way of saying this is that controlling thoughts and behaviors is one of the tasks that System 2 performs. A series of surprising — location: 732


self-control requires attention and effort. Another way of saying this is that controlling thoughts and behaviors is one of the tasks that System 2 performs. — location: 732


A series of surprising experiments by the psychologist Roy Baumeister and his colleagues has shown conclusively that all variants of voluntary effort—cognitive, emotional, or physical—draw at least partly on a shared pool of mental energy. Their experiments involve successive rather than simultaneous tasks. Baumeister’s group has repeatedly found that an effort of will or self-control is tiring; if you have had to force yourself to do something, you are less willing or less able to exert self-control when the next challenge comes around. The phenomenon has been named ego depletion. In a typical demonstration, participants who are instructed to stifle their emotional reaction to an emotionally charged film will later perform poorly on a test of physical stamina—how long they can maintain a strong grip on a dynamometer in spite of increasing discomfort. The emotional effort in the first phase of the experiment reduces the ability to withstand the pain of sustained muscle contraction, and ego-depleted people therefore succumb more quickly to the urge to quit. In another experiment, people are first depleted by a task in which they eat virtuous foods such as radishes and celery while resisting the temptation to indulge in chocolate and rich cookies. Later, these people will give up earlier than normal when faced with a difficult cognitive task. — location: 733


The list of situations and tasks that are now known to deplete self-control is long and varied. All involve conflict and the need to suppress a natural tendency. They include: avoiding the thought of white bears inhibiting the emotional response to a stirring film making a series of choices that involve conflict trying to impress others responding kindly to a partner’s bad behavior interacting with a person of a different race (for prejudiced individuals) The list of indications of depletion is also highly diverse: deviating from one’s diet overspending on impulsive purchases reacting aggressively to provocation persisting less time in a handgrip task performing poorly in cognitive tasks and logical decision making — location: 743


The most surprising discovery made by Baumeister’s group shows, as he puts it, that the idea of mental energy is more than a mere metaphor. The nervous system consumes more glucose than most other parts of the body, and effortful mental activity appears to be especially expensive in the currency of glucose. — location: 760


The bold implication of this idea is that the effects of ego depletion could be undone by ingesting glucose, and Baumeister and his colleagues have confirmed this hypothesis in several experiments. — location: 764


Volunteers in one of their studies watched a short silent film of a woman being interviewed and were asked to interpret her body language. While they were performing the task, a series of words crossed the screen in slow succession. The participants were specifically instructed to ignore the words, and if they found their attention drawn away they had to refocus their concentration on the woman’s behavior. This act of self-control was known to cause ego depletion. All the volunteers drank some lemonade before participating in a second task. The lemonade was sweetened with glucose for half of them and with Splenda for the others. Then all participants were given a task in which they needed to overcome an intuitive response to get the correct answer. Intuitive errors are normally much more frequent among ego-depleted people, and the drinkers of Splenda showed the expected depletion effect. On the other hand, the glucose drinkers were not depleted. Restoring the level of available sugar in the brain had prevented the deterioration of performance. It will take some time and much further research to establish whether the tasks that cause glucose-depletion also cause the momentary arousal that is reflected in increases of pupil size and heart rate. — location: 766


A disturbing demonstration of depletion effects in judgment was recently reported in the Proceedings of the National Academy of Sciences. The unwitting participants in the study were eight parole judges in Israel. They spend entire days reviewing applications for parole. The cases are presented in random order, and the judges spend little time on each one, an average of 6 minutes. (The default decision is denial of parole; only 35% of requests are approved. The exact time of each decision is recorded, and the times of the judges’ three food breaks—morning break, lunch, and afternoon break—during the day are recorded as well.) The authors of the study plotted the proportion of approved requests against the time since the last food break. The proportion spikes after each meal, when about 65% of requests are granted. During the two hours or so until the judges’ next feeding, the approval rate drops steadily, to about zero just before the meal. As you might expect, this is an unwelcome result and the authors carefully checked many alternative explanations. The best possible account of the data provides bad news: tired and hungry judges tend to fall back on the easier default position of denying requests for parole. Both fatigue and hunger probably play a role. — location: 774


For an example, here is a simple puzzle. Do not try to solve it but listen to your intuition: A bat and ball cost $1.10. The bat costs one dollar more than the ball. How much does the ball cost? A number came to your mind. The number, of course, is 10: 10¢. The distinctive mark of this easy puzzle is that it evokes an answer that is intuitive, appealing, and wrong. — location: 786


People who say 10¢ appear to be ardent followers of the law of least effort. People who avoid that answer appear to have more active minds. — location: 800


More than 50% of students at Harvard, MIT, and Princeton ton gave the intuitive—incorrect—answer. At less selective universities, the rate of demonstrable failure to check was in excess of 80%. The bat-and-ball problem is our first encounter with an observation that will be a recurrent theme of this book: many people are overconfident, prone to place too much faith in their intuitions. They apparently find cognitive effort at least mildly unpleasant and avoid it as much as possible. — location: 802


Now I will show you a logical argument—two premises and a conclusion. Try to determine, as quickly as you can, if the argument is logically valid. Does the conclusion follow from the premises? All roses are flowers. Some flowers fade quickly. Therefore some roses fade quickly. A large majority of college students endorse this syllogism as valid. In fact the argument is flawed, because it is possible that there are no roses among the flowers that fade quickly. — location: 806